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Algorithm for parallel Laplacian growth by iterated conformal maps
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We report an algorithm to generate Laplacian growth patterns using iterated conformal maps. The difficulty
of growing a complete layer with local width proportional to the gradient of the Laplacian field is overcome.
The resulting growth patterns are compared to those obtained by the best algorithms of direct numerical
solutions. The fractal dimension of the patterns is discussed.
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Laplacian growth patterns are obtained when the boundBy iterating this fundamental map with randomly chosen
ary I' of a two-dimensional domain is grown at a rate pro-anglesé, and the bump sizek, chosen such as to obtain
portional to the gradient of a Laplacian iR 1]. The clas- equal size particles on the cluster,
sic examples of such patterns appear in viscous fingering in
constrained geometrigsuch as Hele-Shaw cells or porous No
medig. Here a less viscous flui@hside the domain bounded Kﬁw,
by T') displaces a more viscous fluid which is outside the @ (e
domain. The fieldP is the pressure, and Darcy’s law deter-
mines the velocity to be proportional toVP. Using the
incompressibility constraint outside the domaWfP=0,
and each point oF is advanced at a rate proportionalV¥d?

one can easily grow a DLA pattern. On the other hand, the
direct application to the closely related problem of viscous
fingering remained unaccomplished due to technical difficul-

[2.3]. Thus in numerical algorithmB4] one needs at each ties that have been now surmounted, as we report below.

time step to add on a whole layer to the pattern with a local We are interested i> *(w) which conformally maps the

. . . |9 . .
width proportional to|VP|. The boundary conditions are g)ri?ce)nt?lre?:Lﬂeleuggn?:)cfktaﬁe Ilg tlgii?natg?g?r?icnamglagesical
such that in radial geometry as—o the flux is VP P P p phy

A zplane. As in previous work the map("(w) is obtained by
=constXr/r. On the boundaryl” one usually solves the . - ;
. - i teration of fundamental ma . The superscriph
problem with the conditiorP= o« whereo is the surface - 3 PBy; 0, (W) up 'P

tension andk the local curvature of [3]. Without this (or denotesn growth steps. The gradient of the Laplacian field

some other ultraviolet regularization Laplacian growth VP(z(s)) is
reaches a singularityn the form of a cuspin finite time[5].
In this paper we present an algorithm to grow such patterns
using iterated conformal maps. The basic method was intro-
duced[6] in the context of diffusion limited aggregation
(DLA) [7] where it was successfully employed to solve aperesis an arc-length parametrization of the boundary. Con-
number of outstanding problems in the theory of DI\9],  trary to DLA which is grown serially, i.e., particle by par-
its fractal dimensiorf10,11], and its multifractal properties ticle, in Laplacian growth for the problem of viscous finger-
[12-14. ing we need to grow in parallel, i.e., layer by layer.
At the heart of the method stands the elementary mapevertheless the mag(™(w) is still constructed recur-
¢, Which transforms the unit circle to a circle with a sjyely. Suppose that we completed the last layer at growth
“bump” of linear size Y\ around the pointv=e'’. We em-  stepm, i.e., ®™(w) is known, and we want to find the map
ploy the elementary maf] @ (M+P)(w) which maps the exterior of the unit circle to the
exterior of the pattern after the addition of one more layer

|VP(z(s))|= z(s)=dMW(e'’). (3

@™ (e’

(1+)N) 1 whose local width is proportional tv P(z(s))|. The num-
b olW)= ‘/W{ 2w (1+w) 1+W+W( 1+ v? ber p of growth events should be arranged precisely such as
to add the aforementioned layer. To grow a full layer of
21—\ Y2 2 nonoverlapping bumps using the elementary rtpis dif-
“wirnl |IT 1] bx,o(W) ficult because the series of sizZBs, «}F_, and of positions
{6m+itk-1 depend on each other.
=e'%¢, (e w). (1) Consider then theni+ k)th step of growth that we imple-

ment at the anglé,,,, . Due to the reparametrization during
This map grows a semicircular bump with two branch pointsthe p growth stepsk=1,2, ... p, we need first to find an
at the angular position8= «, where angle 8,,, according to the following rule. For a given
position, the size has to be such that its image under the
map ®M*~1) is proportional to the local field

1l = V™ , o~
1—>\)' @ o (gtmg| 1 e,

a=tan
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Ao

" (aif -2
|q)(m+k—1)’(eiom+k)|z|(Dm(e s

Amk=

Here 8, is defined through
DM (@ fm+k) = M+K=1) (@i fmi). (4

On the other hand, the position has to be such that the new
bump on the cluster precisely touches the previously grown

one, i.e., the image of one of its branch points has to be equal
to the image of the corresponding branch point of the previ-

ous bump. When growing the layer in a mathematically posi-

tive direction this means that

(I)(m+k)(ei(9m+k7am+k)) = (I)(m+k*l)(ei(6m+k—l+am+k—1)),

©)

. _ FIG. 1. Viscous fingering pattern obtained through 100 000
_ 1 _
where according to Eq2) a,=tan [2\/)‘—“/(1 An)]. Note growth events. The intermediate steps of growth are also shown.

that e, on_Iy.depends on the siz, and not on the position, Every drawn intermediate pattern is an actual conformal map of the
because it is a property of the unrotated fundamental map,it circle. with the last one beingp (100 000(gi¢)

namely, its branch points. By use of the inverse fundamental

map Eq.(5) simplifies to Third, to avoid growing very many very small particles in
the fjords, we introduce a cutoff, for \,,. This means that
if a bump is about to be grown with a smalbeg then we just
© avoid growing it and proceed to a position which Ng;

. . further down the unit circle. The results of our algorithm
where bx, 0018 the fundamental map which depends onIyWere checked to be independent g, in the range 9106

on the size of the bpmpj)\mk. This can be further simpli- <\ =10"1°. The results shown in this paper are for the
fied to get an equation fof,,. lowest cutoffi . ;=10 1°.
” . ) Finally, the conformal map at the end of the growth of the
gt & TR (77 'ayer can be written as

i k !
N )

elfmikgp, (e fmikgl(mik=m+k) =@l (Imik-1T @mik-1)
m+k’ !

(D(m+p)(w):q)(m)o¢xm+10m+lo .. 'O¢>‘m+p9m+p(w)’

where the right-hand side depends only on the previous 9
bump (m+k—1) and the size of the new particlen(-k).
Thus we can computé,,. , from Eqg.(7) once we know the
size of the bump.

To accomplish the goal of growing a full layer we now
need to estimate the size of the bump,, and from there
compute the positiord,,,, according to Eq(7). This will
D e e e e Botaned by arect umercal soudd]

m+k . .
on the scale of the growth pattern. Therefore the field does One advantage of the present approach is that the confor

not vary significantly from bump to bump. Thus we set themal map_(I) (o) is given explicitly in terms of an 'tefa“O’?
value of\,,, to of analytically known fundamental maps, providing us with

an analytic control on the grown clusters. The nd&a{) (w)
N admits a Laurent expansion
0

= ! (el fmik-1)]~2
Nmtk |<p(m+k*l)’(ei9m+k—1)|2|(I)m(e mtk-1)| 7. (8) n " . )
O (w)=FMw+F{ e (10

where O stands for a functional composition. In Fig. 1 we
presenid (100 909) ,)) which is a growth pattern with 100 000
growth events, including the intermediate stages of growth.
The growth patterns are very similar to those obtained by
direct numerical simulations of viscous fingering in a radial
eqreometry. For comparison we show in Fig. 2 the pattern

In other words, we estimate,, ., for the unknown position
m+ at the position of the last bumfy, ;. Note that with  The coefficient of the linear term is the Laplace radius. De-
Eq. (7) we are guaranteed to have a full cover of the layefiining the radius of the minimal circle that contains the

independently of the estimate af,.,. Only the very last growth pattern byR,,, one has the rigorous result that
bump may not “fit” in, and is therefore not grown.

In order to avoid a bias in the growth pattern we alternate R,= F(l“)> Ry/4. (1)
the direction of filling the layer from clockwise to anticlock-
wise and vice versa. Furthermore we choose the position df is therefore natural to define the fractal dimension of the
the first bump of a given layer randomly on the unit circle. cluster by the radius-area scaling relation
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FIG. 2. Viscous fingering pattern obtained by direct numerical ~ FIG. 3. Double-logarithmic plot of the ared” vs F{". The
solution, see Ref4]. straight line corresponds to a slope ofD.7.

(7). el and height proportional toV P|, and not just height. Since
F1’~S™, (12 our elementary growth events are so small in spatial extent
this does not appear to be a real worry. Finally, in previous
work [15—17] the technical difficulty of growing a complete

n layer was circumvented by constructing a family of models
sm="> DU (e%))]2, (13)  Which included Laplacian growth only as a limiting model.
=1 This family of models achieved a partial coveralye0.65 of
every layer of growth, withC=1 being parallel laplacian

whereS™ is the area of the cluster,

On the other han&{" is given analytically by growth which could be considered only as an extrapolation
n of lower values ofC. Assuming monotonicity of geometric
E(n = T+ Ny, 14 properties as a funct|0r_1 of, th_e ex';rapolatlon p_rocedure

! kljl ( o (149 indicated strongly that viscous fingering was not in the same

universality class as DLA, having an extrapolated dimension
and therefore can be determined very accurately. In Fig. 3wp =2, The present algorithm which achieves directly the
plot the areaS™ in double-logarithmic plot againgt{”.  |imit C=1 appears at odds with the extrapolation procedure.
The local slope is the apparent dimension at that cluster siz&he direct measurement of the dimension is in close corre-
It appears that the dimension asymptotes to the value indspondence with DLA whose dimension is 1.71@.03[11].
cated by the straight line which B=1.7. At present it is not clear whether the contradiction is due to

A few comments are in order. First, our algorithm doesa nonmonotonicity as a function @ whether the clusters

not employ surface tension; rather, we have a typical lengtihave not reached their asymptotic properties, or whether
scale), that removes the putative singularities. The bound-+there is another reason that will be illuminated by further
ary conditions for the Laplacian field are still zero on theresearch.
cluster. The apparent correspondence of our patterns with At any rate it is hoped that the availability of a direct
those grown with surface tension regularization points out irprocedure to grow viscous fingering patterns by iterated con-
favor of universality with respect to the method of ultraviolet formal maps will help to achieve a theoretical understanding
regularization. Second, one may worry that growing semicir-of this problem on the same level of the understanding of
cular bumps means that the elementary step has both lengiiLA.
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