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Algorithm for parallel Laplacian growth by iterated conformal maps
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~Received 22 May 2003; published 8 March 2004!

We report an algorithm to generate Laplacian growth patterns using iterated conformal maps. The difficulty
of growing a complete layer with local width proportional to the gradient of the Laplacian field is overcome.
The resulting growth patterns are compared to those obtained by the best algorithms of direct numerical
solutions. The fractal dimension of the patterns is discussed.
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Laplacian growth patterns are obtained when the bou
ary G of a two-dimensional domain is grown at a rate pr
portional to the gradient of a Laplacian fieldP @1#. The clas-
sic examples of such patterns appear in viscous fingerin
constrained geometries~such as Hele-Shaw cells or porou
media!. Here a less viscous fluid~inside the domain bounde
by G) displaces a more viscous fluid which is outside t
domain. The fieldP is the pressure, and Darcy’s law dete
mines the velocityv to be proportional to“P. Using the
incompressibility constraint outside the domain¹2P50,
and each point ofG is advanced at a rate proportional to“P
@2,3#. Thus in numerical algorithms@4# one needs at eac
time step to add on a whole layer to the pattern with a lo
width proportional tou“Pu. The boundary conditions ar
such that in radial geometry asr→` the flux is “P
5const3 r̂/r . On the boundaryG one usually solves the
problem with the conditionP5sk wheres is the surface
tension andk the local curvature ofG @3#. Without this ~or
some other! ultraviolet regularization Laplacian growt
reaches a singularity~in the form of a cusp! in finite time@5#.
In this paper we present an algorithm to grow such patte
using iterated conformal maps. The basic method was in
duced @6# in the context of diffusion limited aggregatio
~DLA ! @7# where it was successfully employed to solve
number of outstanding problems in the theory of DLA@8,9#,
its fractal dimension@10,11#, and its multifractal properties
@12–14#.

At the heart of the method stands the elementary m
fl,u which transforms the unit circle to a circle with
‘‘bump’’ of linear sizeAl around the pointw5eiu. We em-
ploy the elementary map@6#

fl,0~w!5AwH ~11l!

2w
~11w!F11w1wS 11

1

w2

2
2

w

12l

11l D 1/2G21J 1/2

fl,u~w!

5eiufl,0~e2 iuw!. ~1!

This map grows a semicircular bump with two branch poi
at the angular positionsu6a, where

a5tan21S 2Al

12l D . ~2!
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By iterating this fundamental map with randomly chos
anglesun and the bump sizesln chosen such as to obtai
equal size particles on the cluster,

ln5
l0

uF (n21)8~eiun!u2
,

one can easily grow a DLA pattern. On the other hand,
direct application to the closely related problem of visco
fingering remained unaccomplished due to technical diffic
ties that have been now surmounted, as we report below

We are interested inF (n)(w) which conformally maps the
exterior of the unit circleeiu in the mathematicalw plane
onto the complement of the Laplacian pattern in the phys
z plane. As in previous work the mapF (n)(w) is obtained by
iteration of fundamental mapsfl j ,u j

(w). The superscriptn
denotesn growth steps. The gradient of the Laplacian fie
“P„z(s)… is

u“P~z~s!!u5
1

uF (n)8~eiu!u
, z~s!5F (n)~eiu!. ~3!

Heres is an arc-length parametrization of the boundary. Co
trary to DLA which is grown serially, i.e., particle by par
ticle, in Laplacian growth for the problem of viscous finge
ing we need to grow in parallel, i.e., layer by laye
Nevertheless the mapF (n)(w) is still constructed recur-
sively. Suppose that we completed the last layer at gro
stepm, i.e.,F (m)(w) is known, and we want to find the ma
F (m1p)(w) which maps the exterior of the unit circle to th
exterior of the pattern after the addition of one more lay
whose local width is proportional tou“P„z(s)…u. The num-
ber p of growth events should be arranged precisely such
to add the aforementioned layer. To grow a full layer
nonoverlapping bumps using the elementary map~1! is dif-
ficult because the series of sizes$lm1k%k51

p and of positions
$um1k%k51

p depend on each other.
Consider then the (m1k)th step of growth that we imple

ment at the angleum1k . Due to the reparametrization durin
the p growth steps,k51,2, . . . ,p, we need first to find an
angle ũm1k according to the following rule. For a give
position, the size has to be such that its image under
map F (m1k21) is proportional to the local field
uF (m)8(ei ũm1k)u21, i.e.,
©2004 The American Physical Society01-1
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lm1k5
l0

uF (m1k21)8~eium1k!u2
uFm8 ~ei ũm1k!u22.

Here ũm1k is defined through

F (m)~ei ũm1k!5F (m1k21)~eium1k!. ~4!

On the other hand, the position has to be such that the
bump on the cluster precisely touches the previously gro
one, i.e., the image of one of its branch points has to be e
to the image of the corresponding branch point of the pre
ous bump. When growing the layer in a mathematically po
tive direction this means that

F (m1k)~ei (um1k2am1k)!5F (m1k21)~ei (um1k211am1k21)!,
~5!

where according to Eq.~2! an5tan21@2Aln/(12ln)#. Note
that an only depends on the sizeln and not on the position
because it is a property of the unrotated fundamental m
namely, its branch points. By use of the inverse fundame
map Eq.~5! simplifies to

eium1kflm1k,0~e2 ium1kei (um1k2am1k)!5ei (um1k211am1k21),
~6!

whereflm1k,0 is the fundamental map which depends on

on the size of the bumpAlm1k. This can be further simpli-
fied to get an equation forum1k ,

eium1k5
ei (um1k212am1k21)

flm1k,0~eiam1k!
, ~7!

where the right-hand side depends only on the previ
bump (m1k21) and the size of the new particle (m1k).
Thus we can computeum1k from Eq. ~7! once we know the
size of the bump.

To accomplish the goal of growing a full layer we no
need to estimate the size of the bumplm1k and from there
compute the positionum1k according to Eq.~7!. This will
exactly close the gap between successive bumps in the l
In estimatinglm1k we use the fact that the bumps are minu
on the scale of the growth pattern. Therefore the field d
not vary significantly from bump to bump. Thus we set t
value oflm1k to

lm1k[
l0

uF (m1k21)8~eium1k21!u2
uFm8 ~ei ũm1k21!u22. ~8!

In other words, we estimatelm1k for the unknown position
um1k at the position of the last bumpum1k21. Note that with
Eq. ~7! we are guaranteed to have a full cover of the la
independently of the estimate oflm1k . Only the very last
bump may not ‘‘fit’’ in, and is therefore not grown.

In order to avoid a bias in the growth pattern we altern
the direction of filling the layer from clockwise to anticlock
wise and vice versa. Furthermore we choose the positio
the first bump of a given layer randomly on the unit circ
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Third, to avoid growing very many very small particles
the fjords, we introduce a cutofflcut for ln . This means that
if a bump is about to be grown with a smallerln then we just
avoid growing it and proceed to a position which islcut
further down the unit circle. The results of our algorith
were checked to be independent oflcut in the range 1026

<lcut<10210. The results shown in this paper are for th
lowest cutofflcut510210.

Finally, the conformal map at the end of the growth of t
layer can be written as

F (m1p)~v!5F (m)sflm11um11
s•••sflm1pum1p

~v!,
~9!

wheres stands for a functional composition. In Fig. 1 w
presentF (100 000)(v) which is a growth pattern with 100 00
growth events, including the intermediate stages of grow
The growth patterns are very similar to those obtained
direct numerical simulations of viscous fingering in a rad
geometry. For comparison we show in Fig. 2 the patt
obtained by direct numerical solution@4#.

One advantage of the present approach is that the con
mal mapF (n)(v) is given explicitly in terms of an iteration
of analytically known fundamental maps, providing us wi
an analytic control on the grown clusters. The mapF (n)(v)
admits a Laurent expansion

F (n)~v!5F1
(n)v1F0

(n)1
F21

(n)

v
1•••. ~10!

The coefficient of the linear term is the Laplace radius. D
fining the radius of the minimal circle that contains th
growth pattern byRn , one has the rigorous result that

Rn>F1
(n)>Rn/4. ~11!

It is therefore natural to define the fractal dimension of t
cluster by the radius-area scaling relation

FIG. 1. Viscous fingering pattern obtained through 100 0
growth events. The intermediate steps of growth are also sho
Every drawn intermediate pattern is an actual conformal map of
unit circle, with the last one beingF (100 000)(eiu).
1-2
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F1
(n);S1/D, ~12!

whereS(n) is the area of the cluster,

S(n)5(
j 51

n

l j uF ( j 21)8~eiu j !u2. ~13!

On the other handF1
(n) is given analytically by

F1
(n)5)

k51

n

A~11lk!, ~14!

and therefore can be determined very accurately. In Fig. 3
plot the areaS(n) in double-logarithmic plot againstF1

(n) .
The local slope is the apparent dimension at that cluster s
It appears that the dimension asymptotes to the value i
cated by the straight line which isD51.7.

A few comments are in order. First, our algorithm do
not employ surface tension; rather, we have a typical len
scalel0 that removes the putative singularities. The boun
ary conditions for the Laplacian field are still zero on t
cluster. The apparent correspondence of our patterns
those grown with surface tension regularization points ou
favor of universality with respect to the method of ultravio
regularization. Second, one may worry that growing semi
cular bumps means that the elementary step has both le

FIG. 2. Viscous fingering pattern obtained by direct numeri
solution, see Ref.@4#.
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and height proportional tou“Pu, and not just height. Since
our elementary growth events are so small in spatial ex
this does not appear to be a real worry. Finally, in previo
work @15–17# the technical difficulty of growing a complet
layer was circumvented by constructing a family of mod
which included Laplacian growth only as a limiting mode
This family of models achieved a partial coverageC<0.65 of
every layer of growth, withC51 being parallel laplacian
growth which could be considered only as an extrapolat
of lower values ofC. Assuming monotonicity of geometric
properties as a function ofC, the extrapolation procedur
indicated strongly that viscous fingering was not in the sa
universality class as DLA, having an extrapolated dimens
D52. The present algorithm which achieves directly t
limit C51 appears at odds with the extrapolation procedu
The direct measurement of the dimension is in close co
spondence with DLA whose dimension is 1.71360.03 @11#.
At present it is not clear whether the contradiction is due
a nonmonotonicity as a function ofC, whether the clusters
have not reached their asymptotic properties, or whet
there is another reason that will be illuminated by furth
research.

At any rate it is hoped that the availability of a dire
procedure to grow viscous fingering patterns by iterated c
formal maps will help to achieve a theoretical understand
of this problem on the same level of the understanding
DLA.

l FIG. 3. Double-logarithmic plot of the areaS(n) vs F1
(n) . The

straight line corresponds to a slope of D51.7.
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